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Two-dimensional numerical simulations of a Boussinesq fluid demonstrate the dominant role played
by the large-scale circulation in hard-turbulent Rayleigh-Bénard convection. The “roll” coordinates the
motions of thermal plumes as they shuttle heat flux directly between the top and bottom boundaries.
The roll also subjects the thermal boundary layers to a strong stabilizing shear exhibiting a simple

power-law dependence on the Rayleigh number; this power law (du /3z «< Ra

6/7) is predicted by a theory

[Shraiman and Siggia, Phys. Rev. A 42, 3650 (1990)] which proposes the heat-transport (Nusselt-number)
scaling relationship (Nu < Ra?’7) is determined solely by the structure of the thermal and viscous bound-
ary layers. Also, the transition into two-dimensional hard turbulence is observed to coincide with the
development of plumes which live sufficiently long to carry heat flux in the “wrong” direction. In addi-
tion to these issues of heat transport, the structure of the large-scale roll is investigated and the relation-
ship between the turnover time 7, and the coherence frequency , is made precise.

PACS number(s): 47.27.Te, 47.27.Cn, 47.27.Lx, 47.27.Qb

1. INTRODUCTION

In 1987, a “nonclassical” regime of turbulent thermal
convection was established by Heslot, Castaing, and Lib-
chaber [1] with the aid of carefully performed high-
Rayleigh-number (Ra) experiments in a unit-aspect-ratio
Rayleigh-Bénard cell [2]. Subsequent experiments, incor-
porating both helium and water as working fluids in con-
tainers of various sizes and shapes, have aided the char-
acterization of this flow, which has come to be known as
“hard turbulence” [3-7].

A distinguishing feature of hard turbulence, as report-
ed in [1], is a significant reduction in the time-averaged
heat-transport rate below the “expected” value: Rather
than the “expected” scaling of the Nusselt number Nu [8]
on the Rayleigh number Ra of Nu « Ral!”3, one finds that
above Ra=~4X10’, the heat transport scales as
NuxRa?7 [1]. The expected rate is observed, however,
in certain situations at lower Ra [9] and an elegant scal-
ing theory exists to describe it [10]. The primary motiva-
tion of this paper is to understand what aspects of hard
turbulence are essential for restricting the heat flux and
reducing the scaling exponent from { to 2. We approach
this problem by investigating hard turbulence in two di-
mensions (2D).

Evidence that hard turbulence exists in 2D was first re-
ported in 1990 with the aid of numerical simulations [11].
Noteworthy in [11] is the consistency with the experi-
mental result NuxRa?/7 even though the numerical
study is conducted in 2D while the experiments are 3D.
Subsequent numerical work in 2D [12] reproduces a
sufficient number of the defining features of the experi-
mental hard-turbulent state that one is confident the
physical mechanism responsible for the Nu scaling with
Ra can be understood by investigating the 2D solutions.
To this end, this paper serves to outline the dominant
features of 2D hard turbulence in an attempt to il-
luminate the experimental hard-turbulent flow. The pa-
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per is organized as follows: Section II provides a short
review of the relevant theoretical work on the subject.
Section III briefly describes the 2D computer model em-
ployed and provides information concerning the spatial
resolution of the calculations. The numerical results are
described in detail in Sec. IV: In this section, the se-
quence of bifurcations leading up to the 2D hard-
turbulent state are outlined; the important role played by
plumes in transporting heat flux through the cell is de-
scribed; and finally, the structure of the thermal and
viscous boundary layers is presented. Section V offers
conclusions concerning the theories which attempt to ex-
plain the heat-transport scaling relationship in hard tur-
bulence. An appendix is included to detail the structure
of the large-scale roll without upsetting the continuity of
the rest of the paper, which is primarily concerned with
issues of heat transport.

II. HARD-TURBULENCE THEORIES

Several theories have been proposed to explain the heat
transport in hard turbulence [4,13-15]. All of these
theories successfully derive the scaling relationship
Nu < Ra?’/7 despite the fact that different theories accen-
tuate different aspects of the flow. Here, we concentrate
on the one theory whose approach appears most ap-
propriate in light of the 2D results presented in this pa-
per. This theory is due to Shraiman and Siggia and it
suggests that the heat transport is determined solely by
the structure of the thermal and viscous boundary layers
adjacent to the top and bottom surfaces of the cell [13].

The physical picture of the flow employed by Shraiman
and Siggia is one which emphasizes the large-scale roll
existing in hard turbulence; this roll produces a mean
“wind” along the boundaries and, in so doing, subjects
the thermal boundary layers to a strong shear [16]. The
strong shear stabilizes the thermal boundary layers, al-
lowing them to be thicker than they would be in the
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shear’s absence; thicker thermal layers result in a reduced
heat-transfer rate. This stabilizing action of the shear
was first pointed out by Castaing et al. as an explanation
of the reduction in the heat transfer from Nux<Ra!/3 to
Ra?/7 when the flow undergoes the transition to hard tur-
bulence [4].

Details of the analysis by Shraiman and Siggia include
assumptions that (1) the viscous boundary layer has the
structure of a turbulent ‘“pipe-flow” profile and (2) the
thermal boundary layer is nestled completely within the
laminar sublayer of the viscous boundary layer. It is im-
plicitly assumed that the temperature field is passive and
plays no role in the fluid motion within the thermal
boundary layer. The Nu-Ra scaling relation is obtained
by solving the time-independent heat equation in the lam-
inar sublayer and by balancing the total buoyancy work
in the cell with the viscous dissipation in the boundary
layers. A prediction of this analysis is that the wall stress
scales with Ra as follows: du /dz < Ra®/7 (though this is
not pointed out in [13]).

This theory is in marked contrast to the other theories
which derive the Nu-Ra scaling relationship in hard tur-
bulence. Those theories [4,14,15] emphasize the heat-
transport properties of the turbulent fluctuations in the
center of the cell. Shraiman and Siggia, on the other
hand, consider only the structure of the boundary layers
in deducing the heat transport and suggest that details as-
sociated with the fluctuations in the center of the cell do
not play an important role.

The 2D results presented below support the basic con-
cept proposed by Shraiman and Siggia: In addition to
reflecting the qualitative description of a dominant,
large-scale flow and sheared thermal boundary layers, the
2D solutions do indeed exhibit the power law predicted
for the wall stress. Despite this agreement, however, the
detailed assumptions made in [13] turn out to be unneces-
sarily restrictive. Indeed, our results discussed below
suggest that the scaling results derived by Shraiman and
Siggia are more general than is apparent from the de-
tailed calculation presented in [13].

III. TWO-DIMENSIONAL MODEL PROBLEM

Before presenting the 2D solutions, we briefly discuss
the numerical model with which the solutions are com-
puted. The model problem incorporates the Boussinesq
approximation [17] for an incompressible fluid:

av Ra

Yy — 2y — adl

31 +oXv=0cVv—VP+o 16 T, (1)
T | vr=v2

Y +v.-VT=V°T, (2)
V-v=0. (3)

The vector Ra is directed vertically upward, opposite to
the gravitational force. o is the Prandtl number of the
fluid, v/k. The units of length, time, and temperature
used to express Egs. (1)-(3) in their nondimensional form
are L /2, L?/(4k), and A/2. The variables v, T, and P
are the velocity, temperature, and pressure [18]. @ is the
curl of the velocity field (i.e., the vorticity).

We report here solutions to Egs. (1)-(3) computed on a
square domain of dimensions L X L using a pseudospec-
tral Fourier-Chebyshev tau method. A description of the
numerical algorithm can be found elsewhere [11]; here we
mention only those features of the model that are neces-
sary in evaluating the results presented in this paper.

The conditions imposed on the top and bottom boun-
daries are

v(x,t1)=0, (17
Tx,x1)=%F1, 1)

while the boundary conditions on the sidewalls are

u(£1,2)=0, 2
W 41 2)=0, Q2"
ox
9T 4 4,7)=0 @)
ox

Here, (x,z) and (u,w) represent the (horizontal, vertical)
components of the coordinates and the velocity, respec-
tively. The unphysical, free-slip-sidewall boundary con-
ditions (2'") are utilized to speed computation [19,20] at
the cost of suppressing a backroll instability which occurs
in the four corners of the cell [21]. The physical, no-slip
conditions (1’) are imposed on the top and bottom boun-
daries to more accurately represent the boundary layers
which form there. It will be suggested below that accu-
rate simulation of the thermal and viscous boundary lay-
ers on the top and bottom boundaries is crucial in repro-
ducing the Nu « Ra?/7 scaling law.

The spatial and temporal resolution of the numerical
runs is evaluated in terms of the Kolmogorov length scale
Ix and its associated time scale 7g [22,23],

lK:(U3/8)l/4 , )1/2 ,

Tk =(0/¢
where £=0(9;0,0,0;+9,0,0,7;), is the kinetic-energy
dissipation rate for the velocity fluctuations. Here, the
velocity v; is decomposed into mean ({v; },) and fluctuat-
ing (7;) components (e.g., v =(v),+7) and ( ), indi-
cates a temporal average. (Time averaging is employed
here, instead of the more customary spatial averaging, be-
cause this flow exhibits stationary while it is neither
homogeneous nor isotropic; this will become apparent to
the reader in later sections.) Note that for steady solu-
tions, €=0, [y =0, and 7 = o because € is defined in
terms of the velocity fluctuations 7; and not the mean ve-
locity {v; ),.

Adequate spatial resolution of the velocity field is
achieved when the grid spacing is sufficiently small to
resolve the maximum relevant wave vector k. Typically,
this translates into a grid spacing no larger than =~ 10/
[e.g., an estimate of k, for 3D flows with asymptotically
large Reynolds numbers (Re= UL /v, where U and L are
the velocity and the length scale for the largest-scale
features of the flow) is kylx =0.55 [24]; this gives a grid
spacing of 6x =11/, ]. Resolving the temperature field is
more or less demanding depending on the value of o.
With o > 1, the relevant dissipative length scale for the
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TABLE 1. Spatial and temporal resolution of the numerical simulations. Ra and o are the Rayleigh
numbers and Prandtl numbers for the separate runs. M is the number of grid points in each spatial
direction (distributed uniformly in x and nonuniformly in z; see text). 8¢ is the time step, chosen so that
the numerical algorithm is stable. The combination V'adx /I is the ratio of the grid spacing 8x to the

dissipative length scale for the fluctuations in the temperature field, Ix o

~172 values of this ratio of 10 or

less are interpreted as demonstrating adequate spatial resolution of the small-scale fluctuations. 7 is
the dissipative time scale for the small-scale fluctuations. For the ratio 8¢ /7 <1, the calculations
resolve Tx. Note that for steady solutions, e =0, Iy = 0, and 7, = o« because ¢ is defined in terms of the

velocity fluctuations; see text.

Ra o M &t ‘/E?-:‘ TK TS_;
1.28x10° ; 97 1.0X107 8.68 8.6 10-* 1.2>?10*2
2.56X10° ; 97 5.0X107¢ 8.81 5.3% 104 9.4>?1o—3
5.12Xx10° ; 97 3.0X107° (1).0 2.8% 10~ 1.1 >?1o*2

—6
1.024 X107 ; 133 §:g§ ig“ﬁ (1).2 L6 10-* 1.9>?10*Z
2.048X 107 -1, 129 1.5x107¢ (1).2 8.4 105 1.8)?10‘2
4.096 X 107 ; 129 1.0X107¢ (1).5 425105 2.4>?1o—2
8.192 X 107 ; 193 2.5X1077 (1).3 2.5% 10" 1.o><010*2
1.6384X 108 ; 257 2.0X1077 (1)_2 5% 10~ 1_3>?10—z

temperature field is not Iy, but rather Igzo 172 [25].
Therefore an estimate of the largest acceptable grid spac-
ing with 0>1 is 8x/Ig~100 "2, Our least-resolved
run easily satisfies this condition with the instantaneous
value of 6x/Ix (i.e., before time-averaging &) never
exceeding 2.60 7172,

Table I presents information concerning the resolution
of the runs. Comparison of the time scale 7x with the
time step 8¢ is straightforward and it is apparent that the
time scale for the smallest-scale fluctuations are well
resolved by &7 for all of the runs. (Stability of the numeri-
cal algorithm is the limiting factor in selecting 8¢ [19].)
Comparison of the length scale [xo ~!/? with the grid
spacing is slightly more involved because the grid points
(or collocation points) are distributed uniformly in the
horizontal direction, but are located at the positions
z,=—cos[mw /(M —1)] (m=0,...,M—1), ie.,
nonuniformly, in the vertical direction. For this reason,
the ratio of the grid spacing 8x to the dissipative length
scale /x 0 ~1/2 must be considered carefully:

\/E?—x=[(8x,~ (3,,8,7,),
K

+(8x,)2(8x;)%(8,5;0,7; ), 1V/* .

Here, the Einstein summation convention is used for the
terms 9,0;0,0; and 9,0;0,7;; the factors 6x; and 8x; are
chosen accordingly with x; =x and x,=z. By defining
8x /lg in this way, the grid-spacing direction chosen for
each term is aligned with the direction of the gradient for
that term.

It is evident from Table I that all of the runs adequate-
ly resolve the smallest-scale fluctuations in the tempera-
ture and velocity fields. For the steady-state solutions
(for which £=0), spatial resolution must be evaluated in
terms of the mean velocity and temperature fields, {v; ),
and (T),, since 7; and T are both zero. As evidence that
the mean fields are adequately resolved we note that both
the viscous and thermal boundary layers for all of our
solutions are spanned by at least 12 grid spacings.

IV. NUMERICAL RESULTS

A. Transition to 2D hard turbulence

As Ra is increased, the flow undergoes a succession of
bifurcations before reaching a turbulent state. Most of
these bifurcations occur at critical Ra which depend on
o. Of the two values of o (0=1 and 7) for which we
have a complete sets of runs spanning a limited range in
Ra(0<Ra=<1.6384X10%), the o =7 solutions experience
a greater number of bifurcations and reach the 2D hard-
turbulent state. Below, we summarize this sequence of
bifurcations for 0 =7. We then follow with a brief ac-
count of the o =1 results which do not attain hard tur-
bulence; we do not yet know if hard turbulence exists in
2D for o =1.

The first transition occurs when the purely conductive
state (v=0, Nu=1) becomes unstable to a steady large-
scale roll. The critical Ra, Ra, = 1700, is independent of
o and agrees with the linear stability analysis of the con-
ductive state [17]. As Ra is increased further, the roll’s
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circulation speed increases and the thermal and viscous
boundary layers thin. For o =7, this steady roll gives
way to a periodic state when Ra=Ra, ~4 X 10*. The re-
sulting periodic state is similar to the “BO2 blob instabili-
ty”’ discussed by Bolton, Busse, and Clever [26]: As the
flow circulates, two hot and two cold “blobs” travel
indefinitely around the cell and are responsible for the
periodic time dependence. These blobs are actually the
“crests” and “troughs” of two waves which circulate
about the center of the cell and completely penetrate the
boundary layers; see Fig. 1. The most notable manifesta-
tion of these waves are ripples propagating along the
thermal boundary layers in the direction of the large-
scale flow.

As Ra is increased, the ripples on the boundary layers
grow in amplitude, developing into thermal plumes
which experience a sizable buoyant force. These plumes
compete with the waves in determining the dynamics of
the flow. At Ra=~3X10° the plumes are sufficiently
large to destabilize the periodic two-wave state described

TIME

FIG. 1. Periodic convection with Ra=8X10* and o=7.
The sequence shows the evolution of the temperature field dur-
ing one cycle. The right column depicts the temperature field;
shades of gray are proportional to the temperature; white
represents hot fluid. The left column shows two circulating
waves which exist in the flow for this state. Solid lines represent
hot “wave crests” while dashed lines depict cold “troughs.”
Note the wave-wave interaction occurring in the third and
seventh frames. The waves are visualized by plotting 87 /3t =0
contours (i.e., contours of constant phase).

above. The resulting state is chaotic and is characterized
by quiescent periods (during which several waves propa-
gate around the cell) that are intermittently disrupted by
plumes erupting from the boundary layers. The intermit-
tent plume eruptions dominate the flow, when they occur,
and may even reverse the direction of the large-scale roll.

Once RaR 105 buoyant plumes continually dominate
the flow and a description in terms of waves is no longer
appropriate; see Fig. 2. Roughly speaking, the plumes
emitted from both the top and bottom boundaries be-
come ‘‘synchronized” and the direction of the large-scale
roll is stabilized: Hot plumes emitted from the bottom
boundary travel with the large-scale circulation, impact
the top boundary layer and instigate the formation of
cold plumes there; these newly formed cold plumes
behave similarly and the resulting feedback between the
two boundaries is responsible for the stabilization of the
roll. This state exhibits some of the properties of the ex-
perimental hard-turbulent flow [exponential probability
distribution functions (PDF’s) for temperature fluctua-
tions in the center of the cell, scaling of the rms tempera-
ture fluctuation A, with Ra™ 177 and scaling of the coher-
ence frequency w, with Ra'/?]; however, most notable is
that Nu does not scale with Ra?/7 [11,12]. This appear-
ance of some, but not all, of the properties associated
with the transition to hard turbulence points out a
marked difference between the 2D and 3D flows. This
difference is valuable in establishing the features which
are, and those which are not, directly linked to the heat-
transport scaling observed in hard turbulence.

With Ra>Ray~ 10" for 0 =7, hard turbulence is ob-
tained; see Fig. 3. The signifying feature of this state is
the establishment of NuxRa?/’. Other aspects of the
transition include a change in the velocity PDF from
Gaussian to exponential form and changes in the scaling
exponents for the sidewall velocity and temperature (V
and T;) [11,12]. Though the transitions in Nu, V| and T
are all abrupt, the change in the velocity PDF is a gradu-
al one spanning roughly one decade in Ra. Through this
transition, the temperature PDF in the center of the cell
remains exponential and both A, and w, maintain their
respective power laws with Ra [12]. As will be demon-
strated in this paper, this transition is also signaled by a
change in the structure of the boundary layers and by the
appearance of negative heat flux carried by thermal
plumes traveling in the ‘“wrong” direction.

A feature of 2D hard turbulence as Ra is increased
above Rar is a secondary transition involving the symme-
try of the large-scale roll occurring at Ra~4 X 10’. Such
a secondary transition has not been reported for and may
not exist in 3D. Aside from a change in symmetry of the
roll, the transition is evident through a change in the
scaling of @, with Ra. (@, =2 /7, where 7 is the “large-
eddy” turnover time of the flow; see Fig. 4 and the Ap-
pendix.) None of the other features of hard turbulence,
including the Nu-Ra scaling, are affected during this
second transition.

This secondary transition is easily seen in a plot of the
average vertical heat flux ( Tw —97T/dz), through the
mid-height of the cell (z=0); see Fig. 5. For
107 <Ra<4X10’, the roll exhibits a left-right asymmetry



FIG. 2. Plume-dominated convection with Ra=1.28X 10°
and 0 =7. As in Fig. 1, on the left are cold (dashed) and hot
(solid) 8T /3t =0 contours while the temperature field is shown
on the right. Thermal plumes grow from the thermal boundary
layers and dominate the dynamics of the flow.

(a)

(b)

FIG. 3. Hard turbulence. Ra=1.6384X10% and 0=7. (a)
shows the fluid temperature. (b) depicts the magnitude of the
velocity field with white representing high speeds. The max-
imum velocity for this snapshot is 11 600(«x/L). The images re-
lay the plume-roll interplay for hard turbulence: Plumes
formed on the boundary layer do so in a strong wind resulting
from the large-scale roll. The plumes are swept by the wind
downstream where they coalesce to form a large plume. Large
hot (cold) plumes, overcome by buoyancy, rise (fall) along the
left (right) sidewall, driving the roll. When these large plumes
impact the opposite boundary layer, they instigate the forma-
tion of other plumes [see top boundary of (a)] which continue
the process.
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FIG. 4. Coherence frequency scaling with Ra in 2D hard tur-
bulence. Near the outer portion of the large-scale roll (includ-
ing the boundary layers), w, =, scales with Ra with a power-
law index of % up to Ra=~4X10’. At the center of the roll,
w, =1, is higher than Q, and exhibits a weaker dependence on
Ra for Ra<4X10". For Ra>4X 107, the scaling changes and is
indicative of a transition in the symmetry of the large-scale roll.
The error bars for Q, span the half-width of the peak in the
power spectrum. These results are for 0 =7. See the Appendix
for a detailed discussion of w,.

which is not present for Ra> 8 X 107, the flux through the
(z =0) plane being symmetric for Ra>8X 10”. The fact
that the heat-transport scaling does not reflect this transi-
tion at Ra~4X 107 indicates that the transition, as well
as a detailed description of the symmetry of the large-
scale flow, is more a curiosity of 2D hard turbulence and
does not reveal anything crucial to understanding how
the heat flux is determined. Indeed, this transition illus-
trates a feature of hard turbulence (the symmetry of the
roll at z=0) which develops in a nonuniversal manner
despite the algebraic scaling of Nu with Ra. (See the Ap-
pendix for a more detailed discussion of the structure of
the large-scale roll.)

At this point we remind the reader that the sequence of
transitions outlined above, as well as the conclusions al-
ready drawn about the heat transport in 2D hard tur-
bulence, pertain to solutions with o =7. For o=1, the
flow develops more slowly as Ra is increased above Ra,
and does not attain hard turbulence for
Ra<1.6384X10%. For example, with o =1, the steady-
roll state becomes unstable to a time-dependent solution
when Ra=Ra, ~8X10’, much higher than the analo-
gous transition at Ra~4X10* for 0 =7. This increase in
Ra, for decreasing o is characteristic of the BO2 blob in-
stability [26] and makes low-o computations more costly:
In order to obtain turbulent solutions for o =1, higher
Ra must be considered than for o=7. By
Ra=1.6384X10%, the o =1 flow is certainly not within
the hard-turbulent regime. Figure 6 demonstrate this by
presenting a comparison of time traces of T obtained at
the position (x =0.125,z =0) for c=1 and 7. The solu-
tion with o =7 is well within the hard-turbulent regime;
note that its time dependence is chaotic. The solution
with 0=1, on the other hand, appears nearly periodic
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FIG. 5. Vertical heat flux at the cell mid-height (z =0) for 0 =7. On the left is the flux for Ra=1.6384 X 10%. Practically all of the
flux occurs on the sidewalls. Note that negative dips in the flux are evident inward of the sidewalls and result from hot (cold) fluid
moving down (up), i.e., the “wrong” way. The detail on the right shows the structure of these negative dips as a function of Ra. The
ordinate zero has been shifted by 15 for different values of Ra. Negative dips appear when Ra > Ray. Also, the negative dips betray
a left-right asymmetry in the large-scale roll for 10’ <Ra <4 X 107 which we observe to persist for at least 240 “large-eddy” turnover

times.

with a modulation of its amplitude on a time scale which
is large compared to its period. Note the difference in the
amplitude of the two signals. The period evident in the
figure is simply the ‘“large-eddy turnover time” and is
identical (within ‘“‘experimental” uncertainty) for both
o=1and 7.

B. Heat transport

Returning to Fig. 5, which depicts the time-averaged
vertical flux through the mid-height of the cell, we should
note that the transport due to turbulent, small-scale fluc-
tuations through the center of the cell is negligibly small;
hence we conclude, immediately, that those theories em-
phasizing the turbulent transport of heat flux through the
center of the cell fail to illuminate the relevant physics in-
volved as the flow establishes the heat transport. How
then is the heat flux carried through the cell in 2D hard
turbulence?

First, heat flux diffuses into the cell through the bot-
tom of the sheared, hot thermal boundary layer. This
flux later emerges in the form of thermal plumes develop-
ing out of the top of the hot boundary layer. These

0.050 o="7

0.000

-0.050

0.002
0.001
0.000

-0.001
—0.002 |

0.00

T, Temp, (4/2)

0.02 0.04 0.08
t, Time [L®/(4k)]

0.08

FIG. 6. A comparison of the time evolution of the tempera-
ture T for 0 =1 and 7 near the middle of the cell (x =0.125,
z=0.0). Ra=1.6384X10%. The runs span roughly 40 turnover
times.

plumes are swept horizontally by the fluctuating “wind”
and several coalesce to form a large plume near the
downstream sidewall. Overcome by buoyancy, this large
plume rises along the sidewall and in so doing carries
heat flux away from the hot boundary layer. (Incidental-
ly, the highest velocities obtained in the cell occur along
the sidewalls and are due to these large buoyant plumes;
hence plumes drive the large-scale circulation; see Fig. 7.)
Eventually, the rising plume impacts the upper boundary
layer in the corner where the sidewall meets the upper
surface of the cell. In this corner, the plume is redirected
horizontally; subsequently, it becomes a dominant part of
the “wind” which sweeps along the upper boundary lay-
er, exchanging heat flux directly with the sheared, cold
boundary layer. Once inside the cold thermal boundary
layer, heat flux diffuses out through the top of the cell.
Notice that this scenario does not involve the central re-
gion of the cell in any way and certainly the transport
properties of the central turbulence play, at best, a minor
role.

Many aspects of this scenario are evident in Fig. 5.
The large positive peaks attached to the sidewalls in the
figure result from the large buoyant plumes ejected from
the boundary layers. Because the large-scale flow for
these runs happens to be clockwise, the peak on the left
sidewall results from rising hot plumes while that on the
right results from sinking cold plumes. The smaller nega-
tive dips toward the cell’s center result from plumes
which have swept past the opposite boundary layer from
which they have emerged and live sufficiently long to
continue traveling with the large-scale flow, eventually
moving in the “wrong” direction [i.e., with hot (cold)
fluid moving downward (upward) near the right (left)
sidewall]. In effect, these long-lived plumes are dragged
around the cell by younger, more intense plumes.

It is interesting that the appearance of the hard-
turbulent state for o =7 coincides with the development
of these plumes with sufficiently long lifetimes to move in
the “wrong” direction. Note that the total negative heat
flux occurring at Ra=1.024X 107 is nearly zero; this
value of Ra corresponds to the transitional Rayleigh
number Raj;=~107, at which hard turbulence appears.
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No negative dips in the vertical heat flux occur for
Ra<Ra;. Tempting though it may be to assert that
these negative dips are the hallmark of the hard-turbulent
state, the steady solutions with o =1 (for which no simple
dependence of Nu on Ra is evident) also exhibit negative
dips and for Ra as low as 3.2X 10°. Therefore negative
dips in the vertical flux may exist independently of the
hard-turbulent state.

Nevertheless, we do observe negative dips in the verti-
cal flux and therefore we can make use of them to better
understand the heat transport in hard turbulence. For
example, because the negative dips in Fig. 5 are substan-
tially smaller than the positive peaks adjacent to the

(a)

(b)

FIG. 7. The temperature (a) and the vorticity (b) for
Ra=8.192X 10" and o=7. Clockwise vorticity is shown as
white. The contour for zero vorticity is superposed on the im-
age of the temperature. The images demonstrate that newly
formed plumes drive the large-scale circulation. The intense
cold plume just emitted from the top boundary coincides with
zero vorticity. Also, the sign of the vorticity indicates that the
plume is forcing the fluid around it, rather than simply being
dragged by the large-scale flow.

walls, we infer that a large fraction of the heat flux car-
ried by a plume is deposited directly into the boundary
layer as the plume passes by. In fact, this heat exchange
between passing plumes and the boundary layer is

(a)

(b)

(d)

(e)

(f)

FIG. 8. Heat exchange between large hot plumes and the
cold thermal boundary layer for Ra=8.192X 10" and o=7.
Each image shows the temperature field for the top 38% of the
cell. (a)-(e) depict a hot plume as it sweeps across and ex-
changes heat with the cold boundary layer. (f)—(h) illustrate the
coalescence of several cold plumes near the right corner.
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sufficiently great that it can actually be seen by visualiz-
ing the temperature field.

The sequence of images depicted in Fig. 8 graphically
illustrates the heat exchange between plumes and the
thermal boundary layer. The first image [Fig. 8(a)] shows
a hot plume as it impacts the top boundary layer. Images
8(b)-8(e) follow this plume as it skirts outside the cold
boundary layer. The heat exchange between the plume
and the boundary layer is evident in the noticeable de-
crease in the plume’s thermal energy density (proportion-
al to the temperature or shade of gray) as the plume trav-
els. The remainder of the sequence [8(f)—8(h)] illustrates
the coalescence of several cold plumes near the right-
hand corner as they form a large plume which, in turn,
sinks downward and impacts the hot boundary layer.

In order to quantify the importance of the exchange
between the boundary layer and passing plumes to the
overall heat transport in hard turbulence, we now consid-
er the flux through the top and bottom of the cell in
greater detail. To begin, Fig. 9 presents the horizontal
dependence of the time-averaged heat flux through the
top and bottom surfaces for several values of Ra in hard
turbulence. First, note the near-perfect symmetry of the
near-wall region of the hot and cold thermal boundary
layers: Profiles for the heat flux through both boundaries
are included in Fig. 9 and these profiles are nearly identi-
cal. Evident in the figure are three distinct regions along
the top and bottom boundaries: (1) At the upstream
corner (—1.0<x < —0.7), heat transport is enhanced by
the impact of incoming thermal plumes perpendicular to
the boundary. (2) Immediately downstream of the corner
(—0.7<x <0.4), redirected plumes travel horizontally
and exchange heat with the boundary layer. The steady
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80

(a/L)
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]aT/aZLvall

20 A

0
-1.0

T T T T

-0.5 0.0 0.5 1.0
x, Horizontal Position (L/2)

FIG. 9. Temperature gradient at the top and bottom boun-
daries in hard turbulence. The enhancement at the upstream
corner of the cell (—1<x < —0.7) is the result of intense in-
coming thermal plumes which impact the boundary layer. The
steady decrease in the region —0.7 <x <0.4 occurs as plumes
sweep across the boundary layer, exchanging heat directly with
the boundary layer. The enhancement near the downstream
corner ~ (0.4 <x < 1) results from the ejection of newly formed
plumes from the boundary layer.
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decrease in the heat transport in the streamwise direction
results from spanwise spreading of the redirected plumes
as well as the reduction in the plumes’ thermal energy
density resulting from heat exchange with the boundary.
(3) Finally, near the downstream corner (0.4 <x <1.0),
heat transport is enhanced primarily by the ejection of
large thermal plumes from the boundary. The relative
importance of each of these regions to the global heat
transport may be discerned by examining the fraction of
the total heat flux through the entire boundary which
passes through each of these regions. Figure 10 presents
these fraction versus Ra.

For high Ra, the fraction of the heat transport through
the upstream-corner region decreases markedly as Ra is
increased above Ra;: Though 3T /dz is maximal in this
region, the peak in 97 /3dz becomes sufficiently narrow as
Ra is increased to make the net contribution to the global
heat transport small. On the other hand, the middle re-
gion of the boundary, above which plumes travel hor-
izontally, is responsible for a large fraction of the total
heat flux as Ra is increased above Rar. The dominance
of this middle region favors the theory of Shraiman and
Siggia, which assumes that heat flux enters and exits the
cell through strongly sheared thermal boundary layers.
The compensation of the decreased transport through the
upstream region [region (1)] by the increase through re-
gion (2) is in large part due to the definition of the mid-
point separating these two regions; this point, chosen to
locate the position at which the fluid velocity becomes
“self-preserving,” moves towards the upstream corner as
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FIG. 10. Fraction of the heat flux through (1) the plume im-
pacting, (2) the plume sweeping, and (3) the plume ejection re-
gions of the top and bottom boundaries versus Ra for o =7.
(Fig. 9 depicts these three regions.) Region (2) is defined as
spanning the position near the upstream corner at which the
horizontal velocity becomes self-preserving (see Fig. 15) to the
point of separation where the heat flux is minimal; regions (1)
and (3) take up the remaining portions of the boundary. The
transition to hard turbulence is evident in the figure, reporting a
change in the structure of the boundary layers at Ra~Ra;. For
Ra>Rar, region (2) dominates the total heat flux through the
boundary.
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Ra is increased, signaling the overtaking of region (1) by
region (2). (More will be said about self-preserving wall
layers below.) Near the downstream corner, where plume
ejection takes place, the contribution to the total heat
flux increases slightly with Ra and is ~20%. Of course,
if hard turbulence is the asymptotic state for high-Ra,
Boussinesq convection, these fractions will not increase
or decrease indefinitely and will obtain limiting values as
Ra— « and the entire extent of the boundary layer de-
velops a scaling behavior with Ra. Obviously, our simu-
lations cannot address the asymptotic nature of turbulent
convection for Ra— o [27]. Nevertheless, it is apparent
from Fig. 10 that the heat exchange with passing plumes
in region (2) of the boundary dominates the global heat
transport for high Ra; therefore we now consider the cen-
tral region in greater detail.

In order to quantify the efficiency with which passing
plumes exchange heat with the central portion of the
boundary layers, we estimate the average fraction of a
plume’s thermal energy, which is deposited directly into
the boundary layer as it passes by, by considering the
time-averaged profile for the horizontal component of the
heat flux along the boundary. Figure 11 presents the hor-
izontal flux adjacent to the top boundary for
Ra=1.6384X10% and 0 =7. In the figure, incoming hot
plumes travel from the leftmost corner of the cell to the
right. (The spatial geometry is identical to that of the im-
ages in Fig. 8.) The flux is negative nearest the top
boundary because the temperature of the fluid is less than
the mean temperature in this region and the fluid is mov-
ing in the positive x direction. Just outside the thermal
boundary layer, the flux is positive because the fluid in
this region is comprised primarily of hot plumes also

U D
0.50L i . i
Q(U) : | Ra=1.6384x10°
: =7
0.45L E (D)
\ D) _ 66
Q(u)
0.40L
-L/2  -L/4 0 L/4 L/2

FIG. 11. Horizontal heat-flux profile near the top boundary:
Heat exchange between the boundary layer and passing plumes.
Three profiles of (Tu —37T /dx ), are presented in the region
along the upper boundary layer for which the flow is self-
preserving (see Fig. 15). The shaded regions Q(U) and Q(D)
represent the average heat flux carried by hot plumes as they
pass the upstream x =U = —0.73, and the downstream posi-
tions, x =D = —0.12. The ratio Q(U)/Q (D) is related to the
amount of flux deposited by hot plumes into the cold boundary
layer as the plumes sweep by between x =U and D. The in-
tegral of the horizontal heat flux at the upstream and down-
stream positions is computed from the mid-height of the box,
z =0, to the position near the thermal boundary layer at which
the mean horizontal heat flux is zero. Also, the downstream
flux Q (D) is corrected by subtracting the small amount of flux
which enters across the z =0 line between x = U and D.
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moving to the right. The shaded areas Q(U) and Q (D)
represent the average rate at which heat is carried by
plumes past the horizontal position at which the profile is
plotted. The average proportion f of the heat carried by
plumes which is transferred directly to the cold thermal
boundary layer between U and D is related to the ratio of
the shaded areas Q(D)/Q (U):

_ .0 "
fr=1=G - @)

For Ra=1.6384 X107 and o =7 and the distance between
the upstream (U) and downstream (D) positions span-
ning just 31% of the box width L, we find f=0.34.
Therefore, on the average, a good deal of the plume’s
thermal energy is transferred directly to the boundary
layer as the plume passes by.

Estimates of f; for (U—D)/L =0.20 are plotted
versus Ra in Fig. 12 for both 0 =1 and 7. The fact that
fr can be measured for the time-independent solutions
with o =1 simply indicates that the “passing plumes” in
this case should be considered as long extensions of the
opposite thermal boundary layer (i.e., the “plumes” in
this case are not dynamic objects but rather steady
features of the large-scale flow). The fraction f, for
o=1 is greater than that for 0 =7 because the viscous
boundary layer is thinner relative to the thermal bound-
ary layer for 0 =1. Hence, incoming “plumes” penetrate
more deeply into the thermal boundary layer and, as a re-
sult, exchange heat more efficiently with o =1.
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FIG. 12. fr vs R for 0=1 and 7. fr is the fraction of a
plume’s heat flux which is deposited directly into the opposite
boundary layer. The upstream, U, and downstream, D, posi-
tions span 20% of the box width. U is selected to coincide with
the point separating regions (1) and (2), the position at which
the flow becomes self-preserving for o =7; see Fig. 15. The runs
with =1 do not develop self-preserving wall layers; therefore
selection of U for these runs is ambiguous and we use the same
position chosen for o =7 for lack of a better choice. The error
bars result from the uncertainty in locating U for 0 =7 as well
as the disparity between the results for the top and bottom
boundaries.
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C. Boundary-layer structure

A theory of the efficiency with which plumes exchange
heat flux with the thermal boundary layer and the rate at
which heat flux enters and exits the cell requires a picture
of the detailed structure of the viscous and thermal
boundary layers. Figure 13 presents part of such a pic-
ture: The figure shows the terms in the time-averaged
horizontal momentum and heat equations in the central
region of the boundary layer for Ra=1.6384 X 10% and
o =17. For reference, peaks in the velocity and tempera-
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FIG. 13. Horizontal-momentum- [(a), Eq. (1)] and heat-

equation profiles [(b), Eq. (2)] near the bottom boundary for
Ra=1.6384X10® and o=7. The profiles are plotted for
x=—0.41, at the middle of the self-preserving region of the
boundary layer (see Fig. 15). Mean, i.e., time-averaged, quanti-
ties are denoted with upper-case symbols while fluctuating
quantities carry lower-case symbols. Angular brackets denote
time-averaging. Solid lines are used for the mean advection
terms while dashed lines denote advection by the fluctuations.
The dot-dashed lines represent the diffusive terms.

ture profiles (i.e., roughly the boundary-layer thicknesses,
8 and A defined below) occur at distances from the wall of
0.079(L /2) and 0.044(L /2), respectively. It is evident
that the standard boundary-layer assumption (3, >>9, ) is
appropriate while the other assumption typically made
for boundary-layer flow (9, P not a function of z) appears
marginal.

Evident in the figure is that neither of the assumptions
made by Shraiman and Siggia [13] [(1) pipe-flow profiles
and (2) thermal layer much less than laminar sublayer]
are clearly applicable: A pipe-flow profile requires
W =09,U=09,{uu)=0 (using the notation adopted in
Fig. 13), while a thermal layer nestled completely within
the laminar sublayer results in 3, {zu ) =9, tw ) =0; also,
assumption (2), concerning the relative heights of the
thermal and viscous boundary layers, requires the varia-
tions in the heat-equation profiles to be confined much
closer to the surface than the variations in the
momentum-equation profiles. The agreement of Fig. 13
with these assumptions is not particularly compelling.
Nevertheless, the scaling relationships (NuxRa?/7,
du /dz < Ra®/7) derived from the assumptions in [13] are
obtained; see Fig. 14. One must conclude therefore that
the scaling relationships result more generally than is ap-
parent in [13].

Though we do not present here a more general version
of the boundary-layer analysis in [13], we do present
some features of the viscous and thermal layers which we
hope will prove useful in constructing a more general
theory. The boundary layers we observe for 2D hard tur-
bulence have so-called self-preserving profiles:

u(x,z)=uy(x)(n,), n,=z/8(x), (5)
T(x,2)=1—Ty(x)5(nr), Mmr=z/Alx). (6)
10°} A

----- 8/7 e
S
3 104} ,v 1
& o’
1030 1 .
103 104 10°

R = (Ra — Ra¢) / Rac

FIG. 14. Velocity gradient at the top and bottom boundaries
for c=7. The gradient is obtained at the middle of the self-
preserving region of the boundary layer (see Fig. 15). These re-
sults for hard turbulence (Ra>Ray) are consistent with the %
law predicted by Shraiman and Siggia [13]. The uncertainty in
the data points is roughly the size of the symbols and results
from the uncertainty in locating the middle of the walljet as well
as the disparity between the results for the top and bottom
boundaries.
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For the velocity field, this type of profile is called a
“walljet” or “equilibrium layer” [28,29]. The length scale
6(x) defines the vertical distance from the boundary at
which the maximum velocity uy(x) occurs. Similarly,
A(x) defines a characteristic thickness of the thermal lay-
er and Ty(x) is the magnitude of the temperature
difference (from the wall) at z=A(x). The functions
&(z/8) and §(z /1) describe the velocity and temperature
profiles in the z direction. As the flow develops in the x
direction, the profiles are simply rescaled by A(x), &(x),
To(x), and uy(x); see Figs. 15(a) and 15(b). (Also, see
Fig. 16 for the x dependence of A, §, T, and u,.) Both
the temperature and velocity fields exhibit self-preserving
profiles only from x=-—0.7 to x=0.0 [i.e., not
throughout all of region (2), the central portion of the
boundary layer from x =~ —0.7 to x =0.4]. Downstream
of x=0.0, the velocity profile becomes non-self-
preserving because the flow separates (du /9z=0) near
x =~0.4. Flow separation is unavoidable here because of
the existence of the downstream sidewall. Presumably
the temperature profile also develops in a non-self-
preserving way downstream of x=~0.0 because of the
coupling between the temperature and velocity fields.
Figures 15(c) and 15(d) illustrate the algebraic scaling
with Ra of the boundary layers in 2D hard turbulence.
Profiles at different Ra are included in Figs. 15(c) and
15(d) and they are identical in the range 0<7,,77<1;
therefore a universal structure (i.e., £ and §) for the near-
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wall region exists for hard turbulence and this structure
is simply rescaled (by A, 8, Ty and u) as Ra is increased
beyond Ra,. This simple scaling of the temperature and
velocity profiles results in the power laws du /9z «< Ra%/”
and NuxRa?”’ when Ra>Ra;. In contrast, for
Ra <Ray, the velocity profile, though self-preserving, de-
viates from the universal shape £ and as a result du /9z
does not exhibit the power-law dependence on Ra.

To demonstrate the deviation of § for Ra<Rar, Fig.
17 shows the fractional deviation of the profiles at
different values of Ra from the profile obtained with
Ra=1.6384X10%. We define the fractional deviation for
the velocity profile, Au /u, as follows:

2

Au 1 p1
= J, 61, Ra) = &0, Ra, )P,

u

where
1
N= [ (&, Ra,)Fdn,
and

— z
"7* S(X*) *

Here, Ra,=1.6384X10% and x, is the location of the
middle of the walljet. AT /T is defined in a similar
manner using §{ and A. For Ra>Rag, the percent devia-
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FIG. 15. Self-preserving wall layers in hard turbulence. (a) and (b) show the velocity and temperature profiles for Ra=1.6384 X 108
and o=7 throughout the walljet (—0.7<x <0.0). Whereas the profiles are independent of x, i.e., are self-preserving, for
0<m,,Mr <1, the profiles exhibit x dependence for 1,77 > 1 where they must merge with the large-scale roll in the center of the cell.
This x dependence is evident in the spread in the profiles for 7,7 > 1. (c) and (d) depict the universality of the velocity and temper-
ature profiles in hard turbulence. (c) shows the velocity profiles for Ra of 1.024X 107 through 1.6384 X 10® and 0 =7. The self-
preserving region 7, <1 is identical for all of these Ra and hence £ exhibits simple scaling behavior with Ra. Similar scaling
behavior is exhibited in (d) for the temperature profile . The temperature profiles differ from the velocity profiles in that scaling is
exhibited for the temperature profiles for Ra both above and below Ray. All of the runs (1.28 X 10° < Ra < 1.6384 X 10®) are included
in (d) and all of the profiles are identical.
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FIG. 16. Length, velocity, and temperature scales for the boundary layers in hard turbulence with Ra=1.6384X10® and o =7.
These scales (in the range —0.7 <x <0.0) are used to rescale the profiles £ and § so that they may be overlayed in Figs. 15(a) and
15(b). The upstream corner of the flow is at x = —1. (a) shows the peak horizontal velocity u, vs x [ the velocity at n, =1 in Fig.
15(a)]. Directly below u, the velocity length scale 6 (the height at which du /9z=0) is plotted in (c). Note that the maximum hor-
izontal velocity increases from the upstream corner as incoming plumes are redirected and travel along the boundary. Downstream
of x =0, the maximum velocity decreases as a result of spreading typical of walljets. (c) depicts this jet spreading in the downstream
direction. The additional curves in (a) and (c) for x > 0.4 result from flow separation. (b) and (d) depict the temperature scale and the
thermal length scale, respectively. From (b) we see that the temperature scale of the boundary layer is slightly greater than 1 at the
upstream corner of the cell. This results because the incoming plumes which strike the boundary layer carry fluid directly from the
opposite boundary. T, decreases in the downstream direction because of the heat exchange between the incoming plumes and the
boundary layer. (This exchange acts to decrease the temperature contrast between incoming plumes and the boundary layer.) (c)
shows the spreading of the thermal boundary layer in the downstream direction.

tion in w, Au/u, is <1.5%, while, in contrast, for
Ra<Ray, Au/u is systematic and increases with de-
creasing Ra. AT /T, on the other hand, exhibits no sys-
tematic trend for Ra<Raj;. Hence a fundamental
change in the viscous boundary layer occurs at Ra=~Ray,
while no such change takes place in the thermal bound-
ary layer: For Ra<Ray, a self-preserving wall layer ex-
ists, but its velocity profile depends on Ra; for Ra>Ray,
the velocity profile is independent of Ra and simple scal-
ing behavior is exhibited. For the temperature, a unique
(i.e., independent of Ra), self-preserving profile § is ob-
tained for Ra both above and below Ra,. Therefore the
change in the scaling of Nu with Ra results from the Ra
dependence of the temperature and thermal length scales,
T, and A, rather than from a change in the shape of the
temperature profile. Presumably, this change in the Ra
dependence of T and A is related to the change in the ve-
locity profile &.

An important matter which must be addressed when
constructing a theory of the heat transport through the
boundary layers in hard turbulence is whether the struc-
ture of the boundary layer is truly determined by two
length scales (e.g., 6 and A) or simply by one (i.e., 5=CA,
C =const). In order to address this issue, we plot the ra-
tio 8/A vs x for Ra=1.6384 X 10%; see Fig. 18(a). It is
evident from the figure that § /A is only poorly approxi-
mated by a constant throughout the central portion of
the boundary [region (2)]; the insert shows that &/A
varies by ~14% in this region. This indicates that at
least two length scales are indeed required to describe the
structure of the boundary layer in hard turbulence. Fig-
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FIG. 17. Fractional deviation of walljet profiles versus Ra for
o=17. (a) shows the deviation in the velocity profile Au /u while
(b) shows the deviation in the temperature profile AT /T. The
velocity profiles in hard turbulence are all similar and exhibit a
deviation from each other of ~1.5% or less. For Ra<Ray, a
systematic increase in Au /u with decreasing Ra is evident. In
contrast, AT /T < 1% even for Ra <Ray. The error bars are es-
timated from the disparity in the results from the top and bot-
tom boundaries. Fractional deviations are reported with
respect to the profiles with Ra=1.6384 X 108,
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FIG. 18. Ratio of the velocity and temperature length scales
(8 and A) in hard turbulence. (a) shows 8/A vs x for
Ra=1.6384X10® and 0 =7. The ratio exhibits noteworthy x
dependence (~14%) in the region in which the flow is self-
preserving (—0.7 <x <0) ; see inset. (b) shows §/A at the mid-
dle of the walljet versus Ra. Note that A shrinks faster than & as
Ra is increased.

ure 18(b) further supports this observation by presenting
6/A at the middle of the walljet as a function of Ra.
Note that the ratio 6 /A increases slightly with Ra.
Several observations can be made concerning Fig. 18.
First, it is apparent that the assumption 8 /A >>1 made in
[13] is not valid for our solutions (this conclusion has al-
ready been drawn based on Fig. 13). Hence §/A>>1 is
certainly not a prerequisite for obtaining the heat-
transport scaling Nu < Ra?/’. (We should note, however,
that we have only observed hard turbulence to occur
when 8 /A 2 1.55; hence 6 /A % 1.55 may be a requirement
to obtain hard turbulence.) Second, the conclusion drawn
in [13] that hard turbulence must break down as Ra— «
is not supported by our results. This conclusion is drawn
in [13] based on the proposal that A will eventually be-
come larger than 8 at sufficiently high Ra. The proposal
follows directly from the assumptions in [13] which we
have already demonstrated are not valid for our 2D solu-
tions. Furthermore, our solutions exhibit a thermal
boundary layer which shrinks more rapidly than the
viscous boundary layer as Ra is increased; see Fig. 18(b).
Therefore, for 2D hard turbulence to break down as
Ra-—> o, some mechanism other than A > § is required.

V. CONCLUSION

The 2D simulations represented here illustrate the im-
portant role played by the large-scale circulation in
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hard-turbulent convection. The organized large-scale
flow provides plumes an efficient means to transport heat
directly between opposing boundaries. The large-scale
flow also produces a stabilizing shear on the thermal
boundary layers. For o =7, this boundary-layer shear
flow exhibits simple scaling behavior, while the large-
scale structure of the center of the cell does not; see Fig.
5. This should be compared with the situation with o =1
for which the boundary layers do not exhibit simple scal-
ing behavior. Considering that the o =7 solutions exhibit
hard-turbulent behavior while the o =1 solutions do not,
the numerical solutions strongly imply the importance of
the structure of the boundary layers in determining the
heat transport.

Of the attempts to derive the heat-transport scaling re-
lationship Nu < Ra?/7 [4,13-15] the general approach by
Shraiman and Siggia appears most appropriate. In con-
trast, the other theories which attempt to explain the
Nu-Ra scaling in hard turbulence rely (either in part or in
full) on the transport characteristics of the small-scale
fluctuations in the center of the cell. For our 2D simula-
tions, however, the dominant mechanism for heat trans-
port is via the direct heat exchange between a thermal
boundary layer and coherent plumes emitted from the
opposite boundary. Because the plumes travel with the
large-scale circulation directly from one boundary layer
to the other, heat-transfer mechanisms involving the
small-scale fluctuations in the cell’s center play only a
secondary role.

Though the general approach by Shraiman and Siggia
captures the flavor of hard turbulence as it appears in our
2D simulations, specific assumptions made by Shraiman
and Siggia [(1) and (2) mentioned above] are not borne
out by our solutions. Nevertheless, the scaling relation-
ships derived by Shraiman and Siggia (Nu<Ra?’7 and
du /3z <« Ra®7) are observed by us. We conclude there-
fore that the assumptions in [13] are unnecessarily re-
strictive and that the above scaling relationships are more
general than is evident from [13]. A consequence of the
fact that the flow need not satisfy the assumptions in [13]
in order to exhibit the scaling relationships associated
with hard turbulence is the possibility of hard turbulence
existing in the asymptotic limit as Ra— oo; our 2D solu-
tions (for Ra up to 1.6X 10®) support this possibility.
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APPENDIX: LARGE-SCALE ROLL

As has been discussed above, a dominant feature of
both the 3D and 2D hard-turbulent flows in the unit-
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aspect-ratio configurations is a coherent, large-scale or-
ganization of the flow into a single convective roll
[1,3,6,7,12]. Flows with aspect ratios >>1 are expected
to develop multiple convection ‘“cells” positioned side-
by-side, as is the case for low-Ra convection [17]. Of
course, for high-Ra convection, individual rolls in large-
aspect-ratio containers will have only finite lifetimes and
will be replaced by newly formed rolls due to the inherent
instability of highly driven flows. Nevertheless, we ex-
pect the general characteristics of our unit-aspect-ratio
solutions to shed some light on the properties of hard tur-
bulence in large-aspect-ratio containers.

Issues with which we will be concerned in this appen-
dix include (1) the turnover time of the roll, (2) a nearly
solid-body rotation exhibited in the central portion of the
roll, and (3) the nature of the transition in the structure of
the large-scale roll which occurs at Ra=~4 X 10’.

1. Turnover time and o,

One of the features characteristic of hard turbulence is
a prominent peak in the temporal power spectrum of a
time trace collected at a fixed position in the cell; see Fig.
19. The time trace may be the result of any field (e.g., 7,
P, or |v]) and the frequency associated with the peak is
called the coherence frequency w,. It has been suggested
that the frequency w, is merely an artifact of the large-
scale roll in hard turbulence; in particular, 2/, has
been interpreted as the turnover time of the large-scale
roll [1]. We will demonstrate explicitly that this is indeed
the case.

To begin, an indication of the relationship of o, to the
large-scale roll is evident in Fig. 20, which presents the
signal-to-noise ratio of w, as a function of position inside
the cell for Ra=8.192X10’. The prominent “ring” cen-
tered at the middle of the roll demarcates the region in
which fragments of thermal plumes circulate with the
large-scale rotation. In this central region, plume frag-
ments remain coherent for as long as five rotations of the
large-scale circulation; hence the signal has a strong
periodic component at @,. The absence of a strong o,
peak in the exact center of the roll results because it is ex-
tremely rare for plume fragments to enter this region.

The relationship between @, and the large-scale flow is
made precise by considering the time 7 required for indi-
vidual fluid elements to travel along closed trajectories in
the mean velocity field. Figure 21 depicts a few of the
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FIG. 19. Temporal power spectra for Ra=8.192X 10" and
o=17 for the temperature at x =—0.4(L /2), z=—0.7(L/2)
(near the bottom boundary). the signal-to-noise ratio for w, is
~2. The length of the time trace used to construct this power
spectrum is 202(27/w, ).

FIG 20. Signal-to-noise ratio of w, obtained with time traces
of the temperature for Ra=8.192X 10" and 0 =7. The prom-
inent “ring” demarcates the path along which fluctuations are
most pronounced. The figure is constructed using a coarse spa-
tial subgrid (17X 17 grid points) for 202 turnover times.

streamlines associated with the mean velocity field for
Ra=8.192X10". The streamline depicted with the solid
line has the period 7o=27/®,, where @, is the value of
w, obtained from the spatially averaged spectrum. The

stl;eamlines located within this 7, streamline have periods
which differ only slightly from 7, Exactly how the
period varies between individual streamlines is depicted
in Fig. 22; this figure shows the radial dependence of the
circulation frequency w(r)=2w/7(r), where r is the radial
distance from the center of the cell. [The reader should
note that w(r) is obtained solely from the mean velocity
field; the power spectrum is not utilized in obtaining
o(r).] Because the streamlines are not circular, w(r) is

L/2

L/4 1

._]_‘/4~

-L/2 . . ,
-L/2 -L/4 0 L/4 L/2

FIG. 21. Streamlines for the mean velocity field in hard tur-
bulence (Ra=8.192X 107 and 0 =7). The solid line shows the
streamline with the frequency @, obtained by spatially averag-
ing the spectrum over the entire cell. The dotted lines show
streamlines with frequencies slightly higher than @,,.
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FIG. 22. Circulation frequency w(r) versus radial position
for Ra=8.192X 10" and 0 =7. The error bars depict the range
in w(r) for different streamlines crossing the circle with radius 7.
(Individual streamlines are not circular). The power spectra to
the left and right of the plot are spatially averaged over the cen-
tral 25% and the outer 75% of the cell, respectively. The core
rotates nearly like a solid body and its frequency Q; is higher
than the frequency near the cell boundaries, {,; the w, peak in
the spectra reflects this higher rotation frequency ; in the core.

not unique for a given r. In the figure, the range in w(r)
(represented by the error bars) demonstrates the range in
circulation frequencies for the streamlines which cross
the circle with radius . Near the center of the cell, for
which the streamlines are nearly circular, the range in
o(r) is small. Towards the edges of the cell (r—L /2),
o(r) spans a large range resulting from the drastically
different circulation times associated with those fluid ele-
ments passing near the free-slip sidewalls and for those
moving within the viscous boundary layers on the top
and bottom boundaries.

The validity of the suggestion that 27 /w, is equivalent
to the turnover time 27 /w(r) is demonstrated by the
power spectra flanking the plot of Fig. 22. These two
spectra are spatially averaged over two different regions
within the cell. The spectrum on the right, P (), is the
average spectrum for the outer 75% of the cell
(x,z> =+0.5 and x,z < —0.5). For this spectrum, the o,
peak is characteristic of the low mean circulation fre-
quency in the outer portions of the roll, Q,. To the left
of the plot, the spectrum P;(w) is the result of a spatial
average over the remaining inner 25% of the cell
(—0.5<x,z<+0.5). Notice that the ), peak in this
spectrum has more power towards higher w than P, (w).
This high-frequency component encompasses the higher
circulation frequency at the center of the cell, Q; =w(0).
The reason P;(w) also reflects the outer circulation fre-
quency (), is because this frequency is communicated
throughout the entire cell via the eruption of thermal
plumes from the boundary layers. Hence the spatial
dependence of w(7) is reflected in the spatial dependence
of o, and we can see explicitly that o, contains informa-
tion about the mean turnover time. This identification of
o, with the circulation frequency of the flow holds for all
of the runs conducted and firmly establishes the interpre-
tation of 27 /w,, as a circulation time in the cell.
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2. Solid-body rotation

Aside from identifying 27 /w), as the turnover time for
the large-scale roll, more can be learned about the struc-
ture of 2D hard turbulence from Fig. 22. A noteworthy
feature of the large-scale roll is that the core of the roll
rotates nearly like a solid body. This can be discerned by
the flatness of w(r) near r =0 [i.e., dw(r)/dr =0]; the fact
that dw(r)/9r is not identically zero betrays some shear
in the large-scale rotation. Also, it should be noted that
the core rotation frequency (Q; is the highest circulation
frequency obtained in the cell.

The fact that the central part of the roll rotates nearly
like a solid body results because most of the forcing,
which acts to “stir” the fluid in the cell, takes place near
the boundaries. In fact, the plume fragments which
maintain their coherence sufficiently long to venture into
the central part of the roll exhibit only a small tempera-
ture difference from the mean temperature and are thus
essentially passive. The extent to which solid-body rota-
tion fails to describe the motion of the large-scale roll is
indicated by the slight increase in the circulation frequen-
cy towards the center of the roll. This increase in the
central rotation rate occurs because the large-scale stir-
ring, which results from large thermal plumes circulating
near the boundaries, is not confined completely to the
boundary region itself; as the large, stirring thermal
plumes circulate, they spread inward and, as a result,
they enhance the forcing in the central region.

3. Transition in the large-scale roll

The secondary transition which occurs within the 2D
hard-turbulent state is most pronounced in a plot of the
Ra dependence of w,; see Fig. 4. Both the core rotation
frequency (); (obtained from the central portion of the
mean velocity field), and the outer-roll frequency Q, (ob-
tained by averaging the spectrum over the outer 75% of
the cell), are included in the figure. The scaling suggested
by the experiment of Heslot, Castaing, and Libchaber [1]
(w, <Ra'’?) has been divided out of both Q, and Q; by
multiplying the frequencies by R ~!/? before plotting
them in Fig. 4.

Note that the numerical results exhibit a power-law
dependence of Q, on R below R ~24000 (Ra~=~4X10")
and that this power law is consistent with the exponent 1;
; exhibits a more complex Ra dependence for this range
of Ra. The transition of the large-scale roll at
Ra=4X 107 is clearly evident in the figure through both
Q; and Q,. Recall that this transition is associated with
the symmetry of the large-scale roll; see Fig. 5. Further-
more, recall that no feature besides the coherence fre-
quency w, has been observed to reflect this transition
through its scaling with Ra. Many of the unaffected
features include properties associated with the flow near
the boundaries: Nu [11], du /9z, as well as the sidewall
temperature T, and velocity V, [12]; hence it is apparent
that the exact structure of the flow in the central portion
of the roll is unimportant in determining the characteris-
tics of the flow near the boundaries. It is possible that
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the flow in the central portion of the cell, comprising the
large-scale roll, simply adjusts to the conditions imposed
by the flow near the boundaries and that these conditions,
combined with the geometrical constraint of two-

dimensionality, are incompatible with a self-similar struc-
ture, i.e., independent of Ra, for the large-scale roll with
10" <Ra<4X10". The root of this transition therefore is
probably the result of confining the flow in 2D.
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FIG. 1. Periodic convection with Ra=8x10* and o=17.
The sequence shows the evolution of the temperature field dur-
ing one cycle. The right column depicts the temperature field;
shades of gray are proportional to the temperature; white
represents hot fluid. The left column shows two circulating
waves which exist in the flow for this state. Solid lines represent
hot “wave crests” while dashed lines depict cold “troughs.”
Note the wave-wave interaction occurring in the third and
seventh frames. The waves are visualized by plotting 9T /9t =0
contours (i.e., contours of constant phase).




FIG. 2. Plume-dominated convection with Ra=1.28x10°
and o=7. As in Fig. 1, on the left are cold (dashed) and hot
(solid) 9T /9r =0 contours while the temperature field is shown
on the right. Thermal plumes grow from the thermal boundary
layers and dominate the dynamics of the flow.



FIG 20. Signal-to-noise ratio of @, obtained with time traces
of the temperature for Ra=8.192X 10" and 0 =7. The prom-
inent “ring" demarcates the path along which fluctuations are
most pronounced. The figure is constructed using a coarse spa-
tial subgrid (17X 17 grid points) for 202 turnover times.
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FIG. 3. Hard turbulence. Ra=1.6384Xx10° and 0=7. (a)
shows the fluid temperature. (b) depicts the magnitude of the
velocity field with white representing high speeds. The max-
imum velocity for this snapshot is 11 600(kx/L). The images re-
lay the plume-roll interplay for hard turbulence: Plumes
formed on the boundary layer do so in a strong wind resulting
from the large-scale roll. The plumes are swept by the wind
downstream where they coalesce to form a large plume. Large
hot (cold) plumes, overcome by buoyancy, rise (fall) along the
left (right) sidewall, driving the roll. When these large plumes
impact the opposite boundary layer, they instigate the forma-
tion of other plumes [see top boundary of (a)] which continue
the process.
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FIG. 7. The temperature (a) and the vorticity (b) for
Ra=8.192X 10" and o=7. Clockwise vorticity is shown as
white. The contour for zero vorticity is superposed on the im-
age of the temperature. The images demonstrate that newly
formed plumes drive the large-scale circulation. The intense
cold plume just emitted from the top boundary coincides with
zero vorticity. Also, the sign of the vorticity indicates that the
plume is forcing the fluid around it, rather than simply being
dragged by the large-scale flow.
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FIG. 8. Heat exchange between large hot plumes and the
cold thermal boundary layer for Ra=8.192X10" and o=7.
Each image shows the temperature field for the top 38% of the
cell. (a)-(e) depict a hot plume as it sweeps across and ex-
changes heat with the cold boundary layer. (f)—(h) illustrate the
coalescence of several cold plumes near the right corner.



